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ABSTRACT

A numerical scheme is used to describe the operation of isothermal continuous-flow electrophoresis. The model used accounts for the
effects of diffusion, electroosmosis, and nonuniformities in convection, without the limitations on experimental parameter ranges
imposed by previous solutions. Results from the numerical scheme are verified by comparison with these limiting case solutions. The
flexibility of the numerical scheme provides a basic framework for the description of continuous-flow electrophoresis.

INTRODUCTION

Along with the growth of biotechnology comes an
ever increasing need for separation methods for
analytical, preparative and production scale separa-
tions. Although electrophoresis has widespread ap-
plication as an analytical separative tool, its poten-
tial as a production scale separation method has not
been realized. Limitations imposed by complex
convective heat and mass transfer processes and the
lack of reliable descriptions for these processes have
hindered development in even the most promising
equipment in current use.

Continuous-flow electrophoresis (CFE) [1] is an
attractive method for the scale-up of electrophore-
sis, but even it has yet to be described in enough
detail and in a manner encompassing a sufficiently
broad range of operating conditions to serve as a
basis for process design. This deficiency exists, not
because of a lack of effort in this area, but instead
because previous work has primarily focused on
limiting ranges of operating conditions. Although
the solutions from these prior efforts do provide
useful insight into the operation of CFE under
limiting conditions, as indicated in the review in the
next section, there is a need for a more general
approach.

It now appears necessary to use a numerical
description for the CFE process which not only
agrees with the limiting case solutions, but also
provides a solution where these asymptotic solutions
are inadequate. We begin this process here, using a
modified form of the method of Biscans et al. [2] to
explore the analyses for isothermal operation. Ther-
mal effects, as well as concentration effects, are of
secondary importance in many applications, and we
defer consideration of these to a later effort.

THEORY

For this development, we will focus on the CFE
apparatus represented schematically in Fig. 1. The
apparatus consists of a rectangular flow chamber
with chamber dimensions such that L >> w >> 2d.
Carrier electrolyte flows in the axial (x-) direction,
and an electric field is imposed across the width of
the chamber, perpendicular to the electrolyte flow.
The faces of the chamber at y = 44 are usually
cooled. The sample is introduced into the chamber
at the upstream end, and the trajectory of each
sample component is determined by the vector sum
of the species-dependent motion (electrophoresis)
and the nonselective fluid motion (axial buffer flow
and electroosmotic flow). Spatial variations exist in
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Buffer Flow

Fig. 1. Continuous-flow electrophoresis apparatus. Narrow lines
indicate solute trajectories for the limiting case of zero solute
diffusivity.

both components of the nonselective fluid motion,
and it is this position-dependent velocity which
contributes greatly to the dispersion in this system
and also complicates its description.

We limit our discussion at this time to the case of
isothermal operation. We also limit this discussion
to the case where the concentrations of the species to
be separated are sufficiently low that electrokinetic
effects [3] and electrohydrodynamic spreading [4]
are of secondary importance.

Assuming constant properties, we can use the
following form of the continuity equation:

dc; oc; o%c; ;8%
X~ Z i A Dim A3 a7
Vigy T Vi, (m2+@ﬂ+af M

where Dy, is the effective binary diffusivity of
component / in the buffer medium, v, is the x-com-
ponent of the buffer velocity and v, ; is the sum of the
electrophoretic velocity of species i (v.;) and the
z-component of the buffer flow caused by electro-
osmosis (v,). The terms v, and v, ;can be expressed as

v = vo[l — (v/d)*] )

and

3
Vz,i = vef,i + Vv, = Vet i + veo{l - E[l - (y/d)z]} (3)

where vq 1s the maximum axial velocity and v, is the
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electroosmotic velocity. Positive valves of v.; and
Ve, indicate movement in the positive z-direction.
The boundary conditions for eqn. 1 are

@ ¢=0 z= 4+
{b) dc;/dy =0
(c) ci=ciod(z) x=
(d) ¢,—0 X — o

where ¢; o is the mass input per unit area and 5(z) isa
unit impulse function defined by 4(z) = 0, z # 0

and [ é(z)dz = 1.

We can rewrite eqns. 1-3 in terms of dimension-
less parameters as

Lo, 0 & et P

gk T Vaige = Peo 1<5x*2 ay*? + (3:*2) @

vi=[1-0%7] )
et 3

V=g @{1 -1 - @*)21} (6)
Vo Vo 2

where: x* = x/d; y* = y/d; z* = z/d, ] = cidjcio
and Pey = vod/D;,. The boundary conditions be-
come:

(a) ¢f=0 ¥ =+

8

(b) dcijoy* =0 y*¥=0,+1
(c) ¢t =d(z%) x*=0
(d) ¢¢—0 x* - 0.

Two quantities of potential interest can be de-
fined: the average concentration, ¢} ,,,, where
1
| ci(Lid, y*, z%)dy*

—1
C?,avg: o 1 (7)

| T eLid y*, z*)dy*dz*

—oo -1

and the bulk, or flow-averaged, concentration, ¢,
where

1
[ ci(Lid, y*, z*vidy*

—1

o= ®
f [ eLyd y*, z*vidy*dz*

—aw -1

From these expressions for ¢},,, or ¢, and eqns.
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4-6, we can sec that the interactions of the ex-
perimental parameters can be summarized in terms
of the following dimensionless groups: L/d; Pey;
vef,i/vo; Veo/vO-

Analytic solutions to eqns. 4-6 can be obtained
using various simplifying assumptions, but these
solutions are only valid for specific limiting cases.
We review these solutions below.

Previous work

Strickler and Sacks [5]. Strickler and Sacks
examined the limiting case where the effects of
diffusion can be neglected, and the solute profiles are
strictly a result of the hydrodynamics. The angle of
the deflection of a solute molecule in the chamber is
determined by the ratio v, ;/v,, where

Vs + veo{l e (y/dﬂ}
Vz,i _ 2 _

vy voll — (y/d)?]

(vef’i>[ 1+ ki - §k1:| (9)
Vo 1 —G/d) 2

and k; = veo/ver;. The result of the y-dependence
shown in eqn. 9 is called the “crescent effect”, for the
crescent-shaped solute profile seen in CFE experi-
ments. We can see from eqn. 9 that, in order to
minimize the dispersion for a desired product, the
electroosmotic velocity v., should be equal and
opposite to the electrophoretic velocity v ; of the
desired product. Satisfying this condition eliminates
the y-dependence of the migration angle for that
solute and consequently eliminates the crescent-
shaped profile.

Ivory [6]. Tvory incorporated the effects of diffu-
sion in both the x- and z-directions, but neglected
diffusion in the y-direction. This assumption was
justified as a reasonable assumption as long as the
mean diffusional displacement in the y-direction (4,)
is much smaller than the half-thickness (d). This
criterion was written as

b D) [Pl;/(;‘)]”z «1 (10)

where Pe(y) = Peyvi (y*)and ¢t & L/v, s the solute
residence time.

The solution to eqn. 4 when the diffusion in the
y-direction is neglected is
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yx*

“= (ﬁ)

Kify(x** + z*9)'7)
(x*z x 2*2)1/2 '

P
exp[—zeg(x*v; + z*v;,,.)] (11)
where

y? = Ped(vi + viR)/4

K, (") is the modified Bessel function of the second
kind of order one. Eqn. 11 can be numerically
integrated to get ¢} .y, OF C}p.

Reiset al. [7]. Reis et al. did consider diffusion in
the y-direction, but they used the approximation
based on the Gill and Sankarasubramanian [8]
extension of Taylor’s method [9] for describing
convective dispersion. This solution is valid for large
values of (L/d)/Pey, such that the system residence
time is sufficiently long that an asymptotic state is
approached in which diffusion in the y-direction
exactly balances the disturbance caused by the
nonuniform axial velocity.

The solution, which is valid only for the special
case when electroosmotic flows are not present
(Veo = 0), is

ool (50 )|
G lf 314, (12)

W= 6 \/a

where

C = (Z - vef,it)/d
T = tDim/aQ

L = (L — <vx>tz

dPeo
d

1
<Vi> —Zijvxdy
—d

T

¢ = J k(6)d0

0

1 2
k2 = (;’_ez) 54—5 IE3 nzx

In order to get the expression in eqn. 12, the

expl— (mr)2 o]
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assumption was made that the ratio « & 1, where
was defined as
<L CiVy >

o = (13)
<> <>

1

{ ~dy*. This ratio allows the
-1

conversion between the average concentration and
the bulk concentration.

Biscans et al. [2]. Biscans et al. proposed neglecting
only axial diffusion as truly unimportant relative to
axial convection. Eqn. 4 can then be written as

, oci 0ci i ¢
Sy s _Pe51<‘ L. ‘) (14)

Vi Vei
ox* oz* oy*2 T g%z

Finite difference methods were used to solve the
equation on a plane of constant x* for grid points in
y* and z* using an iterative procedure. The x*-
coordinate was then incremented, and the solution
was determined on that y*—z* plane. The boundary
conditions used were

(a) ;=0
) ¢t=0 yE= 11

where < > =

The boundary condition at x* = 0 was not explicitly
expressed in the article but was described as a
squared input occupying 20-30% of the cell. Bound-
ary condition (b) limits the validity of the solution to
the case where the sample 1s introduced to only a
small portion of the cell (in the y*-direction) and the
sample residence time is sufficiently short. This
criterion can be expressed as

4,)? L/d
(g) - 3(1%) (15)

where 4, is the shortest distance between the sample
input and the walls at y* = +1.

Present work

The solutions listed above are all limited in
applicability to specific parameter ranges. The solu-
tion described by Ivory [6] is only applicable when
(L/d)/ Peq is small, while that of Reis et al. [7]is valid
for large (L/d)/Pey. The method used by Biscans et
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al. [2] is limited to both reasonably small (L/d)/Peq
and small input sample dimensions as given in eqn.
15.

Our goal is a solution capable of covering the
entire parameter space of practical interest. We use
for this purpose an approach similar to that of
Biscans et al. [2]. neglecting only axial diffusion as
truly unimportant relative to axial convection. Our
scheme differs from that of Biscans primarily in two
ways. We have used 4 more general boundary
condition 1n the y*-direction, so our scheme is not
restricted by the limitation expressed in eqn. 15.
Also, we do not use an interative numerical solution,
but rather a modified version of an alternating
direction implicit scheme, proposed by Peaceman

and Rachford [10]. to find the numerical solution to
eqn. 14.

For this approach, we can rewrite eqn. {4 in the

form [11]

ocs
Z’?:: = At + A, (16)

where A, and A4, are linear operators, defined as

_ ”ZCT v Oci
(P€0V ) t %2 * Ax (17)
Ve O
("’lcf
Azcz (P(OVK) 7 *2 (18)

The following two-step scheme is then used to get
an approximation to eqn. 16:

(1— ‘”* AT V2, ) = (1+-42h>0(m n)

(19)

x* .
AT Y2 0m, n)

(

(20)

where C¥(m, n) and C? ™ ' (m,n) are approximations of
i(x%, Vo Zn) and (XG4, Vi, z3), Tespectively, and
CItY2(m, 1) is an intermediate variable. The terms
Ay, and A,y are the second-order finite difference
approximations for 4, and A,, respectively, given
by
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A”,Cj(m, n) = (PeOV;)_l[ (AZ*)Z

Ciim,n + 1)=2C%(m,n) + Ci(m,n — 1)] _ E[C"(m,n +1)— Ci(m,n— 1):| @1

24z*

o
vx

AZth(m»n) = (Peov’;)—l( (Ay*)2

The following finite difference boundary condi-
tions are used:

() Ci(m,0) = Ci(m,N) =0
(b) —3C¥(0,n) + 4C(1,n) — C'(2,n) =0

(©) —3Ci(M, n) + 4CI(M — 1,n)
~C(M —2,m) =0

with the ““initial” condition
(d)Ciim,n) = 1,

which approximates the delta function mass type
input used in the solutions of Ivory and Reis. The y*
range for the finite difference scheme is given by
Vo Sy < ¥y where yo=—1 and yy =1. The
range for z* is z§ < z}, < zj where the boundaries at
z and zy are set such that these boundaries do not
significantly impact the solution. This choice allows
us to use the “infinite boundary” condition (a).
Boundary conditions (b) and (¢} are second-order,
one-sided approximations for boundary conditions
(b) in eqn. 4.

The requirement for the solution of this numerical
scheme to show the correct convective-dispersive
character is a limit on the step size in z* [11]:

Az* < —2—(1‘)—> 23)

PeO Va,i

x*=0,—-1<y*<L,z*=0

This condition does, however, place a lower limit on
the time it takes to determine the solution by
imposing a rather large minimum size for the matrix
of concentrations.

RESULTS

As shown earlier, the experimental parameters
necessary to determine either c},,, or ¢}, can be
summarized in terms of the following dimensionless
groups: L/d; Peg; Vet i/Vo; Veo/Vo. Table I contains a
summary of several recently reported experiments
using the CFE apparatus. We have used the data
provided in these references to obtain approximate

Ciim + 1,n)—2Ci(m,n) + Ci(m — 1,")> (22)

useful ranges for the important dimensionless
groups, and these ranges are reported in Table II. It
is in terms of these four dimensionless parameters
that we base our discussion.

For the numerical scheme to be generally appli-
cable, it is necessary that the numerical solution
approach the asymptotic solutions developed by
Ivory [6] and by Reis ez al. [7] under the limiting
conditions of low and high values of (L/d)/Peg,
respectively, as well as show realistic behavior
between these two limits.

In an effort to verify this behavior, a series of
computer simulations was performed. Figs. 2-5
compare the bulk concentrations as a function of
chamber position calculated using the solutions of
Ivory, Reis and the finite difference scheme pre-
sented in the previous section. The experimental
parameters used in the simulations were: Pey =
2°10% veri/ve = 2.5°1073; vo/vo = 0. For these
simulations only the dimensionless length of the
chamber (L/d) was varied, with L/d = 2-10?,
5-10%,1-10*and 2 10*, For these values of L/d, the
value of (L/d)/Peo ranges from 0.01-1.0.

In Fig. 2, (L/d)/Pey = 0.01, and we can see that
the finite difference solution matches the solution of
Ivory almost exactly. At this low value of (L/d)/Pey,
the concentration profile seen is primarily a function
of hydrodynamics, giving a purely “‘convective
peak’ which agrees with the development of Ivory.

In Fig. 3, (L/d)/Pe; = 0.25, and the convective
solution no longer suffices. The hint of a double
peak is now apparent, with the dispersive type
solution predicted by Reis appearing as a shoulder
on the convective peak. In Fig. 4, with (L/d)/Pe, =
0.5, the situation is reversed, with the convective
peak now a shoulder on the dispersive peak. In Fig.
5, (L/d)/Peq = 1.0, and the peak closely approxi-
mates the dispersive solution of Reis; the convective
peak is no longer present. The difference between the
concentrations predicted by the finite difference
solution and the solution of Reis is due primarily to
the error introduced into the Reis ef al. solution by
the assumption stated in eqn. 13 (i.e. « = 1.0).
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TABLE I

EXPERIMENTAL DATA

T. M. GRATEFUL, E. N. LIGHTFOOT, Jr.

Apparatus Dimensions (cm) Solutes Residence Ref.
time {min)
L w 2d
ACE 710¢ 20 NA®* 008 Erythrocytes NA {12
18 4 0.03 Cells 0.5 [13]
CFE system*® 120 6 0.15 Cytochrome ¢, myoglobin, 4 [14]
f-lactoglobulin, ovalbumin
120 82 0.18 Granules containing 10.4 [15]
growth hormone
VaP 214 25 10 0.05 Liposomes 1.5 [16]
0.07 Chromosomes 2.1 [17}
VaPp 22¢ 50 10 0.05 Alcohol dehydrogenase in yeast extract 5-20 [18]
Alcohol dehydrogenase in yeast extract 2.5-10 [19]
Lysosyme in E. coli extract 7.8-14.7 {20]
Hemoglobin 11.4 [21]
x-amylase from E. coli extract 5 [22]
Myoglobin, catalase, thyroglobulin 5 [23]
Formaldehyde dehydrogenase, 5 [24}
formate dehydrogenase,
methanol oxidase
Endosomes, lysosomes 33 [25]
VaP 2204 100 16 0.05 Formaldehyde dehydrogenase, 33 24]
formate dehydrogenase,
methanol oxidase
Lab models 100 15 0.05 Alcohol dehydrogenase in yeast extract 5 [18]
30 4 0.3 Hemoglobin, cytochrome ¢, 4 [26]

bovine serum albumin

Not available.

)

Hirschmann (Munich, FRG).

McDonnell Douglas (St. Louis, MO, USA).
Bender & Hobein (Munich, FRG).

2.0 A
1.5 ]
TABLE 11 N
ib ]
EXPERIMENTAL PARAMETER RANGES 1.0 ]
Parameter Approximate range 0.5 7
Lid 200-4000 ]
Pey* 10%-10 0.0
Verl? Il o 1 2 3 4 5
- 10731071 .
Yo Vo z

¢ Using estimates of solution properties.

b Estimated from concentration profiles given in references.

¢ Generally the same order of magnitude as (v/vo).

Fig. 2. Comparison of the bulk averaged concentration ¢}, using
the solution of lvory, Reis ez al. and the finite difference solution
of the present work (FDS). L/d = 2.0 10%, Pe, = 2°10%,
Veg/Vo = 2.5 1073, veo/vg = 0.0.
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0.20 -~-~ Reis
]

0.15 3
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-

Z

Fig. 3. Comparison of the bulk averaged concentration ¢}, using
the solution of Ivory, Reis ef al. and the finite difference solution
of the present work (FDS). L/d = 5103, Pey = 2-10%, vy/vy =
251073, v,o/ve = 0.0.

Fig. 6 shows the progression of the concentration
profile, calculated using the finite difference solu-
tion, from the convective result to the dispersive
result. The experimental parameters are the same as
in Figs. 2-5, with L/d ranging from 2- 103-2- 10*, At
low values of (L/d)/Pe,, we see the steep, long-tailed
peak of the convective solution. At large values of
(L/d)/ Pe,, the effect of diffusion in the y-direction
becomes important because the solute residence
time is sufficiently long that the solute molecules are
able to sample the entire y-range, leading to a

0.15 -
] >
"""" vory
1 ---- Reis
0.10 -
Cib ]
0.05 -
0.00 T TT LA B e B |
) 20 40 60 80 100

Fig. 5. Comparison of the bulk averaged coordination c} , using
the solution of Ivory, Reis ef al. and the finite difference solution
of the present work (FDS). L/d = 2°10%, Pes = 2 10%, vefv, =
2.5°1073, veo/ve = 0.0.
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0.10
. — FDS
- lvory
0.08 ~=- Reis
\
- AN
0.06 - ‘
\\
clb | \
0.04 i '
4
0.02
0.00 LA | rl—l rl]l:lllll|lf|j rl‘fll[lll
[s] 25 50 75 100 125 150

z

Fig. 4. Comparison of the bulk averaged concentration ¢ , using
the solution of Ivory, Reis et al. and the finite difference solution
of the present work (FDS). L/d = 1104, Pey, = 2 10%, ve/vy =
2.5 1073, veo/¥o = 0.0.

Gaussian shaped peak. At the intermediate values of
(L/d)/ Pey, it appears that both peaks are present.
The “double peak” seem is similar to that sometimes
seen in chromatography [27] and in other mathema-
tically similar systems [28].

It is important to note that the preceding profiles
were calculated using the condition of no electro-
osmosis (v, = 0). However, under normal experi-
mental conditions, electroosmosis does occur, and it
is thus important to be able to include its effects in

0.4
] (A)
0.3 -
]
. ]
Cip O.Z-j
] (8)
0.1 q
C)
q (2] ()
0.0 +-+r— " rrT—rarreeTT T T T
0 20 40 60 80 100
r4

Fig. 6. Effect of the dimensionless length of the chamber L/d on
the bulk averaged concentration ¢, using the finite difference
solution of the present work. Pey = 2° 10%, v/ve = 2.5-1073,
Veo/Vo = 0.0. Curves are for L/d = 2 - 103 (A), 5 - 103 (B), 1 - 10*
©), 1.5 10* (D), 2 - 10* (E).
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0.3
1
E - = FDS, k=
e — FDS, k=-1
o n e lvory, k=0
0.2 4 ===~ lvory, k=-1
* E
Cip g
0.1 4
' S,
00 lIIl[ll'llrlr["l[lTlT[lT..l.lfllllI
o] 10 20 30 40 50 60

-

z

Fig. 7. Comparison of the effect of electroosmotic flow on the
bulk averaged concentration ¢ using the solution of Ivory and
the finite difference solution of the present work (FDS) for
VeolVo = 0.0 and ve/ve = —8.67-1073. Lid = 2-103, Pe, =
2,63 10°, v/vy = 8.67-1073,

any description of the system. As was noted, the
solution proposed by Reis et al. does not include the
effect of electroosmosis. In Fig. 7 we show the results
of a comparison between the solution of Ivory and
the finite difference scheme for the conditions:
Peg = 2.63-10%, vy i/ve = 8.67-107% and L/d =
2-10%. We compare the solutions obtained for
both v,/ve = 0 and v /v, = —8.67 1073, cor-
responding to ki = veo/Ve: = 0, —1. As was
predicted by the expression derived by Strickler and
Sacks, dispersion is minimized as the value of the
electrophoretic velocity approaches a value equal
and opposite to the electroosmotic velocity (v, —
_vef,i)'

It is interesting to note in Fig. 7 that, while the
solution provided by eqn. 11 does not give the
correct concentration profile for ve,/ve; =0, it is
indeed valid for v.,/ve; = —1, independent of the
value of (L/d)/Pe,. Diffusion in the yp-direction
ceases to be important in the calculation of the final
solute profile when the trajectory is independent of
the y-position.

DISCUSSION

We have verified that the results from the finite
diffeence solution match those of the asymptotic
solutions for the limiting cases. This fact, and the
observation that the solution behaves as expected
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over the transition from the convection-dominated
to the dispersion-dominated regime, verify that the
use of the finite difference approximation does not
introduce any significant error into the solution, and
affirm our confidence in the applicability of the
finite difference scheme to the entire range of the
parameter space.

Although the solutions of Reis et a/. and Ivory are
analytical and thus much less time-consuming to
evaluate, their use must be limited to conditions
under which their assumptions hold. The use of the
inappropiate model will give an error not only in the
peak location, but in the peak shape as well.

The finite difference solution proposed by the
present work can be easily modified to incorporate
nonuniform, nonrectangular sample inputs and
nonisothermal conditions, as well as alternate velo-
city profiles. Our scheme provides the basic frame-
work for the description of the operation of CFE
over currently useful conditions.

The intent of the present work is to show the
utility of a numerical description for the system
given; therefore, no optimization of the numerical
method or computer code was performed. It is useful
to note, however, that for a sample run such as that
seen in the finite difference results shown in Fig. 7,
the code took 9.5 cpu hours to execute on a
VAXstation 3100 (Digital Equipment Corporation,
Maynard, MA, USA). This simulation was com-
posed of 1000 steps in x and a matrix of y, z values
that was 40 x 1750. It is the stiffness of the
differential equation (see eqn. 23) which requires a
large number of matrix elements to accurately
described the system.

SYMBOLS

Ay, A, linear operators

Ay, Azn  second order approximations to 4y, 4,
¢ concentration of species i

<> concentration averaged with respect to y
I dimensionless concentration

Ciave average concentration

Cip bulk, or flow-averaged, concentration
Cio mass input per unit area

d half-thickness of the chamber

Dy effective binary diffusivity of species i
ki vco/”vef.i

L length of the electrode region
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Pey vod/Dim

t time

Vo maximum axial velocity in the chamber

Vet,i electrophoretic velocity of species i

Veo electroosmotic velocity

vy axial or x-component of the buffer
velocity

<V, > axial velocity averaged with respect to y

Vi, Vi dimensionless velocities

Vai sum of v ; and v,

w width of the chamber

X, ¥,z rectangular coordinates

x*, y* z*  dimensionless coordinates

Ax*, Ay*, step sizes for x*, y*, z*

A4z*

o <y > (<> <ve>)

z) unit impulse function

Ay mean diffusional displacement in the y-
direction
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